3,390 research outputs found

    Neuroimaging in Psychiatry: From Bench to Bedside

    Get PDF
    This perspective considers the present and the future role of different neuroimaging techniques in the field of psychiatry. After identifying shortcomings of the mainly symptom-focussed diagnostic processes and treatment decisions in modern psychiatry, we suggest topics where neuroimaging methods have the potential to help. These include better understanding of the pathophysiology, improved diagnoses, assistance in therapeutic decisions and the supervision of treatment success by direct assessment of improvement in disease-related brain functions. These different questions are illustrated by examples from neuroimaging studies, with a focus on severe mental and neuropsychiatric illnesses such as schizophrenia and depression. Despite all reservations addressed in the article, we are optimistic that neuroimaging has a huge potential with regard to the above-mentioned questions. We expect that neuroimaging will play an increasing role in the future refinement of the diagnostic process and aid in the development of new therapies in the field of psychiatry

    Angry expressions strengthen the encoding and maintenance of face identity representations in visual working memory

    Get PDF
    This work was funded by a BBSRC grant (BB/G021538/2) to all authors.Peer reviewedPreprin

    Functional imaging reveals working memory and attention interact to produce the attentional blink

    Get PDF
    Copyright @ 2012 Massachusetts Institute of Technology PressIf two centrally presented visual stimuli occur within approximately half a second of each other, the second target often fails to be reported correctly. This effect, called the attentional blink (AB; Raymond, J. E., Shapiro, K. L., & Arnell, K. M. Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology, Human Perception and Performance, 18, 849-860, 1992], has been attributed to a resource "bottleneck," likely arising as a failure of attention during encoding into or retrieval from visual working memory (WM). Here we present participants with a hybrid WM-AB study while they undergo fMRI to provide insight into the neural underpinnings of this bottleneck. Consistent with a WM-based bottleneck account, fronto-parietal brain areas exhibited a WM load-dependent modulation of neural responses during the AB task. These results are consistent with the view that WM and attention share a capacity-limited resource and provide insight into the neural structures that underlie resource allocation in tasks requiring joint use of WM and attention.This research was supported by a project grant (071944) from the Wellcome Trust to Kimron Shapiro

    Deficits in reality and internal source monitoring of actions are associated with the positive dimension of schizotypy

    Get PDF
    People with schizophrenia have deficits in retrieving the source of memory information. Research has focused on two types of judgements: reality monitoring (discriminating internally-generated stimuli from external information) and internal source monitoring (distinguishing two different internal sources). The aim of the current study was to assess the relation between schizotypy and both types of source memory in healthy volunteers. One hundred and two participants completed two source memory tasks: one involved the completion of well-known word pairs (e.g. Fish and? ) and the other was an action based task (e.g. nod your head). At test participants needed to indicate whether the act had been performed or imagined by themselves, performed by the experimenter, or was new. The positive dimension of schizotypy was positively correlated with errors in internal source monitoring i.e. confusing participant performed and imagined acts. Furthermore, the same dimension of schizotypy was also positively associated with reality monitoring errors i.e. confusing participant performed/imagined with experimenter performed items. However, these relationships were not found in the word pair task. Our findings suggest that there might be overlap in the processes required to retrieve source information from memory, particularly for actions, and the occurrence of unusual experiences in healthy volunteers

    Excessive response to provocation rather than disinhibition mediates irritable behaviour in Huntington’s disease

    Get PDF
    BackgroundIrritable and impulsive behaviour are common in Huntington’s disease (HD: an autosomal dominant disorder causing degeneration in cortico-striatal networks). However, the cognitive mechanisms underlying these symptoms remain unclear, and previous research has not determined if common mechanisms underpin both symptoms. Here we used established and novel tasks to probe different aspects of irritable and impulsive behaviour to determine the neural mechanisms involved.MethodsWe recruited a cohort of 53 gene positive HD participants and 26 controls from non-affected family members and local volunteers. We used established questionnaire measures of irritability in HD (Snaith Irritability Scale, Problem Behaviours Assessment) and impulsivity [Urgency, Premeditation Perseverance, Sensation-seeking, Positive urgency scale (UPPSP), Barratt Impulsivity Scale], in addition to cognitive tasks of provocation, motor inhibition, delay discounting and decision making under uncertainty. We used generalised linear models to determine differences between cases and controls, and associations with irritability in the HD group.ResultsWe found differences between cases and controls on the negative urgency subscale of the UPPSP, which was associated with irritability in HD. The frustrative non-reward provocation task also showed differences between cases and controls, in addition to predicting irritability in HD. The stop signal reaction time task showed case-control differences but was not associated with irritability in HD. None of the other measures showed group differences or predicted irritability in HD after correcting for confounding variables.DiscussionIrritability in HD is mediated by excessive response to provocation, rather than a failure of motor inhibition

    So pretty! The neural correlates of self-other vs familiar-other attractiveness comparisons.

    Get PDF
    Previous research has demonstrated that comparing two persons activates a frontoparietal network associated with numbers and nonsocial magnitudes. However, it is unclear whether this network is also recruited by comparisons involving the self. Self-reflection engages self-serving motivations (e.g., the maintenance of a positive self-image) and is associated with specific brain structures, such as the medial prefrontal cortex (MPFC), the anterior insula (AI) and the anterior cingulate cortex (ACC). Self-other comparisons may thus rely on distinct neural activity. To clarify this question, we used fMRI and asked female participants to compare their own attractiveness (or the attractiveness of a familiar woman) to pictures of unknown women. Participants were slower for comparisons with targets whose attractiveness was similar to their own (or their familiar other). Yet although this behavioral result resembles the distance effect reported for nonsocial magnitudes, at the brain level, it was linked to the activity of the AI, the ACC and the MPFC. The effect of distance in these regions was stronger for self-other than familiar-other comparisons. We interpret these results in relation to previous literature in social psychology and social neuroscience

    Dissecting the neurocomputational bases of patch-switching

    Get PDF
    The survival and well-being of humans require solving the patch-switching problem: we must decide when to stop collecting rewards in a current patch and travel somewhere else where gains may be higher. Previous studies suggested that frontal regions are underpinned by several processes in the context of foraging decisions such as tracking task difficulty, and/or the value of exploring the environment. To dissociate between these processes, participants completed an fMRI patch-switching learning task inspired by behavioral ecology. By analyzing >11,000 trials collected across 21 participants, we found that the activation in the cingulate cortex was closely related to several patch-switching-related variables including the decision to leave the current patch, the encounter of a new patch, the harvest value, and the relative forage value. Learning-induced changes in the patch-switching threshold were tracked by activity within frontoparietal regions including the superior frontal gyrus and angular gyrus. Our findings suggest that frontoparietal regions shape patch-switching learning apart from encoding classical non-learning foraging processes. These findings provide a novel neurobiological understanding of how learning emerges neurocomputationally shaping patch-switching behavior with implications in real-life choices such as job selection and pave the way for future studies to probe the causal role of these neurobiological mechanisms

    Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions

    Get PDF
    Open Access funded by Wellcome Trust Under a Creative Commons license Acknowledgments This research was supported by the Wellcome Trust (grant number 077185/Z/05/Z) and the Welsh Assembly Government through the Wales Institute of Cognitive Neuroscience.Peer reviewedPublisher PD
    corecore